Computational Studies of Reaction-Diffusion Systems by Nonlinear Galerkin Method

نویسنده

  • Miroslav Kolář
چکیده

This article deals with the computational study of the nonlinear Galerkin method, which is the extension of commonly known Faedo-Galerkin method. The weak formulation of the method is derived and applied to the particular ScottWang-Showalter reaction-diffusion model concerning the problem of combustion of hydrocarbon gases. The proof of convergence of the method based on the method of compactness is introduced. Presented results of numerical simulations are composed of the computational study, where the nonlinear Galerkin method and Faedo-Galerkin method are compared for the problem with analytical solution and the numerical results of the Scott-Wang-Showalter model in 1D.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Discontinuous Galerkin Methods for Reaction-Diffusion Systems in Developmental Biology

Nonlinear reaction-diffusion systems which are often employed in mathematical modeling in developmental biology are usually highly stiff in both diffusion and reaction terms. Moreover, they are typically considered on multidimensional complex geometrical domains because of complex shapes of embryos. We overcome these computational challenges by combining discontinuous Galerkin (DG) finite eleme...

متن کامل

Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis

The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...

متن کامل

A numerical treatment of a reaction-diffusion model of spatial pattern in the embryo

In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...

متن کامل

Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods

Integration factor methods are a class of ‘‘exactly linear part’’ time discretization methods. In [Q. Nie, Y.-T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006) 521–537], a class of efficient implicit integration factor (IIF) methods were developed for solving systems with both stiff linear and nonlinear terms, arising from spatial...

متن کامل

Discontinuous Galerkin finite element methods with shock-capturing for nonlinear convection dominated models

In this paper, convection-diffusion-reaction models with nonlinear reaction mechanisms, which are typical problems of chemical systems, are studied by using the upwind symmetric interior penalty Galerkin (SIPG) method. The local spurious oscillations are minimized by adding an artificial viscosity diffusion term to the original equations. A discontinuity sensor is used to detect the layers wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013